Handwritten HW 30

Page 357

32. Verify the *parallelogram law* for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n :

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$

Solution:

34. Let $\mathbf{u} = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$, and let W be the set of all \mathbf{x} in \mathbb{R}^3 such that $\mathbf{u} \cdot \mathbf{x} = 0$.

What theorem in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^3 ? Describe W in geometric language.

Solution: